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The question of the maximum amount of energy which can be radiated by a collapsing spherical star is
reexamined. On Newtonian theory, gravitational energy is negative and unbounded below, so that unlimited
amounts of energy can be released. It is shown that, in the relativistic collapse of a star with non-negative
energy density, self-closure always takes place before the star can release 1009, of its initially positive mass
energy. Moreover, under physically reasonable restrictions on the pressure, the 100% upper limit can be
approached only if the star happens to pass through a very special and improbable momentarily static con-
figuration first considered by Zel’dovich. It is concluded that for normal spherical collapse the efficiency of

energy release must be low.

I. INTRODUCTION

ARLY attempts to explain the prodigious energy
output of quasistellar sources in terms of the
collapse of massive superstars! foundered on two major
difficulties; the relatively brief time span of the active
phase of collapse, and the lack of an efficient mechanism
to convert kinetic energy of fall into outgoing energy.
Rough estimates! indicated that the efficiency (energy
release/original mass energy) for spherical collapse
is unlikely to exceed a few percent; however, detailed
integrations of the relativistic hydrodynamical equa-
tions with allowance for energy emission have yet to
be carried out.

Recently, Dyson? raised the question whether an
upper bound on the efficiency can be inferred from
purely energetic considerations. His conclusion was
that a collapsing spherical star is capable, in principle,
of releasing up to 1009, of its mass energy, though the
theoretical upper limit is only approachable under
special and improbable circumstances.

This conclusion will be reaffirmed in this paper, but
we shall show that Dyson’s argument needs modification
and that the condition for approaching 1009, efficiency
is actually much more restrictive than previously
supposed.

The condition is simply that each layer of the star
should be momentarily and simultaneously brought to
rest just outside the Schwarzschild radius 7= 2m/(r,t)
corresponding to the mass interior to it. That this leads
to efficiencies arbitrarily close to 1009, is easily under-
stood from quite simple considerations. If a collection
of baryons, whose mass is AM when dispersed at
infinity, is lowered quasistatically in the field of a
spherical mass m(AM<<m) and assembled to form a
thin spherical shell of radius 7, its contribution to the
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total gravitational mass is only Am=AM (1—2m/r)?,
the reduction arising from the loss of potential energy.
It follows that the gravitational mass of an arbitrarily
large number of baryons can be brought arbitrary close
to zero if they are assembled as a series of momentarily
static shells with radii r=2m(r,)+ e(r,) (e — 0+).

In the following sections we shall prove that this very
special and artificial distribution (first discussed by
Zel’dovich?) is essentially the only one which yields
gravitational masses arbitrary close to zero for material
with positive energy-density and pressure. It is therefore
safe to conclude that the efficiency in any normal
situation of spherical collapse must fall far short of the
theoretical 1009, limit.

II. EFFICIENCY CANNOT EXCEED 1009,

We begin by showing that a static or nonstatic
spherical distribution whose local energy-density is
everywhere non-negative cannot develop a negative
gravitational mass. While this result is often treated as
“obvious,” an explicit proof has not been previously
given to our knowledge.*

In terms of curvature coordinates,® the spherical
line element may be written

ds?=[1=2m(r,})/r]dr*+rdQ*
—[1—2m(rp)/rle2¥ode. (1)

These coordinates remain nonsingular so long as 7
remains spacelike and a monotonic function of radial
arc length, and both of these conditions will obtain
so long as

2m(rt)<r. 2)
From the field equation G¢#= —8r T, we find®
Im(rt)/dr=—4ar*T£2>0, 3)

8 Ya. B. Zel’dovich, Zh. Eksperim. i Teor. Fiz. 42, 641 (1962)
[Soviet Phys. JETP 15, 446 (1962)].

4See, however, D. R. Brill and S. Deser, Ann. Phys. (N. Y.)
50, 548 (1968).

5 See, e.g., J. L. Synge, Relativity: The General Theory (North-
Holland, Amsterdam, 1960), Chap. 7.
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1 ENERGY RELEASE IN SPHERICAL COLLAPSE

since the positive-energy condition (7',*%,#*>0 for
all timelike vectors ##) implies 74<0. We write r= R(f)
for the boundary with the exterior vacuum, so that
m[ R(f), ]=m is the externally observed gravitational
mass.

Now suppose m is negative. Then (2) is trivially
satisfied for »>R(¢), showing that » is monotonically
increasing in the exterior region, and decreases (at least
initially) as one moves inwards from the surface. The
inequality (3) ensures that (2) remains valid with
continuously increasing depth from the surface, so
that » continues to decrease and ¢ remains meaningful.
We can therefore integrate (3) inwards to the center,
where we necessarily encounter a negative-mass
singularity: m(0,{)<m<0. This contradiction estab-
lishes that, actually, m>0.

It should be noted that our result #2>0 presupposes
Jfinite exterior time £, and is therefore a restriction only
on the exfernally measurable gravitational mass. In
fact, general relativity imposes no restriction on the
amount of radiation which can leave a star’s surface
after it has collapsed inside the Schwarzschild radius®;
however, all this energy is trapped and cannot reduce
the external mass. We could sum this up by saying
that self-closure will always act so as to prevent the
development of negative mass in relativistic collapse.

III. ONLY THE ZEL’DOVICH DISTRIBUTION
GIVES 1009, EFFICIENCY

The number of baryons in the star is

A=/ 0N, |2,
3

where z(7,f) is the baryon density, #* the four-velocity,
and the integral is taken over any complete spacelike
section 23 with unit timelike normal N,. If Z; is
identified with {=const, we have |N4|dZ=e¥4xrdr.
Hence A=A[R(}), {], where we have defined

A(r )= / nutetdnridr . 4)
0

We now make four assumptions, of which only the
first two are essential; assumptions (iii) and (iv) are
introduced for simplicity and can be avoided by a
more elaborate argument.

(i) The star evolves from a nonsingular initial state.
(This means that initially the star’s surface is rep-
resented by a timelike curve in quadrant I of the
Kruskal diagram shown in Fig. 1.)

(ii) The local energy-density is non-negative. The
fluid pressure is non-negative and does not exceed the
energy density.

¢ For a description of the collapse of a radiating star within
i(tfgS%lwarzschild radius, see W. Israel, Phys. Letters 24A, 184
67).

Fi16. 1. Kruskal diagram for Schwarzschild’s vacuum space-time
using lightlike axes #,9. Quadrant I represents ‘“‘our” universe,
quadrant III a different asymptotically flat universe joined to
ours by an Einstein-Rosen bridge. The timelike curves 4B and
CD represent two possible histories for the boundary of one of
the stellar models discussed in Sec. IV. Shading on the curves
distinguishes the star’s interior.

(iii) The hypersurface ¢=const is globally spacelike
and can be extended to the center.” This implies that
(2) is satisfied for all  and that 7 is monotonic.

(iv) Any radiation produced has already escaped
from the star, so that we are dealing purely with a
simple fluid having energy density u(,t) and pressure
P(rt).

From (3) and (4), we obtain for the gravitational
mass

R
m= / (—prt*ua~+Puur)4ar?dy
0

A " R(¢)
=/ (—>e“’|u4[dA (r)t)+47r/ Puluyr*dr.
[ 0

The second integral is non-negative, and vanishes for
a momentarily static configuration. In the positive
definite integrand of the first integral we can set

e |ua| =[1—2m(r,0) /r+ (u')* ], ©®)

7 This assumption may not be valid during the final stages of
collapse to the Schwarzschild radius. Hence it is preferable to
work with null hypersurfaces of constant retarded time % (u is
constant along outgoing radial light rays), for which this difficulty
does not arise. The appropriate formalism (allowing at the same
time for outflowing radiation) has been set up by W. C. Hernandez
and C. W. Misner, Astrophys. J. 143, 452 (1966). From Eq. (5)
of this reference and the discussion following Eq. (41) it follows
that Schwarzschild’s radial coordinate » decreases monotonically
as one moves outwards relatively to the matter at constant u,
provided p+P>0. Then, from Egs. (B8) and (B13) and the
discussion following Eq. (14), one can easily set up an argument
paralleling the above, but assuming only our conditions (i) and
(ii), and arrive at precisely the same conclusion. (Note that when
each part of the star is just outside its Schwarzschild radius there
is effectively no difference between “simultaneity’ as defined in
terms of ¢ or of u.)
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an immediate consequence of g*fuus= —1. By choosing
the expression (5) (more accurately, its mass average
over the star) sufficiently small, and only by so doing,
we can reduce the first integral to arbitrarily small
values for any given number of baryons 4 and any
given equation of state.

The necessary and sufficient condition that m=~0
for fixed 4 is therefore essentially that the star pass
through a momentarily static configuration with
mass distribution given by the Zel’dovich condition?
r=2m(rt)+ e(r,l) (e— 0+), ie., u=~1/8xr2 This dis-
tribution could be truncated internally so as to form a
hollow shell®; if it is continued inwards to the center,
e(r,t) must be adjusted carefully to avoid a singularity
there.?

IV. NATURE OF “UNIFORM CONFIGURATIONS”

An apparent counterexample to the result just proven
is to be found in Ref. 9, where a sequence of momentarily
static configurations is exhibited whose mass tends to
zero for arbitrarily large 4, and which have wuniform
density. However, as we shall now show, these models
have unusual properties which make them inapplicable
in the present context.

The momentarily static configurations constructed in
Ref. 9 are characterized by wu(7,lp) =puo=const, so that
m(r,lo) = $mwuer®. Introducing a new radial coordinate X,
defined by

r=a sinX

into (1), where a=[(8/3)muo ]2, we find
(ds?) t—to= @ (dX?+sin?X dQ?) —e¥ cos?’X di?,  (6)

showing that aX measures radial proper distance from
the center. The boundary of the configuration is given
by

X=X,

r=R(ty)=asinX,, m=3%asin®X,. (7)

The authors of Ref. 9 now argue that if X, is allowed
to increase towards =, the baryon number

Xo
A =4ra® / 7 sIn?X dX
0

increases towards a finite limit, whereas (7) shows that
both the radius and the gravitational mass sink to zero.

To understand the origin of this result, we must
examine more closely the nature of the configurations
with Xo>4w. These models can be interpreted in two
possible ways.

8 For thin shells in equilibrium the fact that m— 0 in the
ultrarelativistic limit has been noted and discussed in some detail
by J. E. Chase [Nuovo Cimento (to be published)].

9 B. K. Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler,
Gravitation Theory and Gravitational Collapse (University of
Chicago Press, Chicago, 1965), Chap. 8.
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According to the first interpretation, the star is (at
least initially) an accessible component of ‘our”
universe with boundary represented by a curve, such
as AB, in quadrant I of Fig. 1. However, if such a
configuration (with Xo>3w) were truly a distribution of
uniform density uo, as we might at first suppose, then
we run into the following difficulty : Adding a spherical
shell of uniform density w, should lead to a new
“uniform” configuration whose radius R is both larger
than the original (since it extends further into the
exterior Schwarzschild space where # is monotonically
increasing) and also smaller (since it corresponds to a
larger 4 and larger X,).

At the root of this difficulty is clearly the fact that 7
changes abruptly from decreasing outwards to increas-
ing outwards at the boundary of a configuration with
Xo>%m, and this indicates the presence of a shell of mass.

We adopt 6, ¢, and proper time 7 as intrinsic coor-
dinates 6* of the boundary, so that the intrinsic three-
metric is

£45d0°d0>= R2Q2—dr?.

The surface energy three-tensor S,; of the shell is given
in terms of the jump v.3=Kapt—Kus~ of the extrinsic
curvature by

—8mSab="Yas— gabg* W ca-
We thus derive the surface density
Srr=—(1/47R)v4s.

A straightforward calculation yields for the extrinsic
curvatures of the imbeddings in the interior space (6)
and the exterior Schwarzschild space at the moment of
the time symmetry ¢=1,

Ko~ =a sinX, cosX,,
Kegt=R(1—2m/R)"2= a sinX,|cosX,| .

Substitution into (8) shows that S,,<0 if Xo> 3.

We conclude that the “uniform” configurations with
Xo> 3w, if regarded as part of ‘“our” universe, are
actually encased in a layer of negative mass.

The second interpretation of the Xo>3w models
avoids this particular difficulty. The boundary is
considered to be a curve, such as CD, in quadrant 111
of Fig. 1. This makes the gradient of 7 continuous
across the boundary. However, the exterior vacuum
region now includes two singular curves »=0 and both
past and future event horizons r=2m, {==4c. To an
external observer such an object would appear simply
as a “black hole” which has existed in that form for
all time, and it is specifically excluded from the con-
siderations of Sec. ITI by our assumption of nonsingular
initial conditions.

10 W. Israel, Nuovo Cimento 44B, 1 (1966); 48B, 463 (1967).



